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On the physical interpretation of the mathematics
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Abstract —The use of mathematical relations is discussed with the idea of enhancing the teaching–learning process in
thermodynamics. It is emphasized that the physical interpretation of mathematical relations is of importance in explaining
thermodynamic phenomena, showing how thermodynamic tables are made, the physical interpretation of thermodynamic diagrams,
the design of experiments, and research in fields that require thermodynamics, particularly for quantities that involve nonmeasurable
thermodynamic properties. It is believed that the appropriate use of these relationships contributes to the clear understanding of
thermodynamic concepts, processes and systems.  2000 Éditions scientifiques et médicales Elsevier SAS
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Nomenclature

c speed of sound . . . . . . . . . . . . . . m·s−1

cp specific heat at constant pressure . . . . kJ·kg−1·K−1

cv specific heat at constant volume . . . . . kJ·kg−1·K−1

h specific enthalpy . . . . . . . . . . . . . kJ·kg−1

k ratio of specific heats,cp/cv
p pressure . . . . . . . . . . . . . . . . . . kPa

s specific entropy . . . . . . . . . . . . . . kJ·kg−1·K−1

T temperature . . . . . . . . . . . . . . . . K

V flow velocity . . . . . . . . . . . . . . . m·s−1

v specific volume . . . . . . . . . . . . . . m3·kg−1

X any other thermodynamic property

Greek symbols

ρ density . . . . . . . . . . . . . . . . . . kg·m−3

* Current address: Department of Civil and Mechanical Engineering,
United States Military Academy, West Point, NY 10996, USA.
io7597@trotter.usma.edu

1 This article is a follow up to a communication presented by the
author at the ECOS ’98 Seminar held in Nancy (France) in July 1998.

1. INTRODUCTION

In almost all books ofThermodynamics, there is a
chapter on the “Thermodynamic relations for simple
compressible substances” [1], “Thermodynamic property
relations” [2], or “Thermodynamics of a simple com-
pressible substance” [3]. This is included, it seems, as
an afterthought without following through the physical
interpretation of the results. The reasons why certain
processes result in given relations, or why the slopes of
lines have the form that they do on certain thermody-
namic diagrams can easily be explained by simple phys-
ical interpretation of the mathematical analysis of ther-
modynamics. Often, the Maxwell equations are obtained
as a consequence of mathematical reasoning rather than
the physical value of such relations. It is never discussed,
however, how thermodynamic experiments can be de-
signed, how thermodynamic assumptions must be satis-
fied, and how the results may be used.

Research in thermal hydraulics requires the analyses
to include various thermodynamic properties and rela-
tions [6]. If these are of the nonmeasurable type, then the
numerical integration of these relations lead to different
results due to the accumulation of errors. Nevertheless,
fundamental thermodynamics teaches us that the choice
of these parameters are arbitrary as long as they are inde-
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pendent [1–3]. It is indeed easy, but interesting, to show
that the end result is the same, as it should be, and a sim-
ple analysis does prove it very elegantly [7]. In one of
the examples given below, this is proven. As a matter of
fact, similar concepts were used to clarify the numerical
difficulties of two-phase flow situations that commonly
arise in nuclear thermal hydraulics as well as two-phase
correlations that are used for design [8].

There are different ways to solve for or discuss these
useful relations. Here the method of Jacobians [4] is used.
This is a personal preference and other methods may be
used equally successfully depending on one’s choice. The
method is not discussed here; rather it is used to show the
results of some thermodynamic situations of interest.

1.1. Example 1

In this example, the slope of a constant volume line
in the superheated region of the Mollier diagram will be
investigated. The result will be applied to an ideal gas,
since steam at elevated temperatures acts as one, and its
functional form, in general, will be determined.

The quantity that is to be investigated is(∂h/∂s)v
since theh–s diagram is the Mollier diagram. As a first
step, this relation is written in terms of Jacobians as(

∂h

∂s

)
v

= [h,v][s, v] (1)

Then, the terms that involveu, h, g andf , specific in-
ternal energy, enthalpy, the Gibbs and Helmholtz poten-
tials, respectively, are eliminated by using equations of
the form

dh= T ds + v dp (2)

written in the form of Jacobians as

[h,X] = T [s,X] + v[p,X] (3)

whereX is any other thermodynamic property. Thus in
this case,

[h,v] = T [s, v] + v[p,v] (4)

Since in a cycle, from the first law,

[T , s] = [p,v] (5)

and since the definition of the specific heat at constant
volume is

cv

T
= [s, v][T ,v] (6)

then the combination of equations (1), (4), (5) and (6)
gives (

∂h

∂s

)
v

= T
{

1+ v

cv

(
∂p

∂T

)
v

}
(7)

This result shows that the constant volume line on
the Mollier diagram is that of temperature along with a
correction term. For an ideal gas,(

∂p

∂T

)
v

= cp − cv
v

(8)

which upon substitution into (7) gives(
∂h

∂s

)
v

= kT (9)

This, therefore, shows that the slope of the constant
volume line of an ideal gas on the Mollier diagram
follows that of the temperature increased by the factor
of the ratio of specific heats. For a given situation, the
validity of the ideal gas assumption must be investigated
before equation (9) can be used. Equation (7), however,
is the generalized result and is applicable to steam at any
state.

Other slopes on the Mollier diagram can also be
investigated to better explain and clarify the physical
interpretation of the diagram. Similarly, other diagrams
can be investigated. The undergraduate and graduate
students find this approach very useful and learn on their
own the mathematics of the Jacobians in its mathematical
context since the physical significance can be better
understood.

1.2. Example 2

The relation between the pressure,p, and temperature,
T , in a reversible adiabatic process is useful in solving
many important and interesting problems. The applica-
tion of the result to a special case of an ideal gas with
constant specific heats is also very useful in solving many
problems of significance. Therefore, the relation that is
to be investigated can be written as(∂p/∂T )s which be-
comes in terms of Jacobians(

∂p

∂T

)
s

= [p, s][T , s] (10)

With the use of equation (5) and the definition of specific
heat at constant pressure,

cp

T
= [s,p][T ,p] (11)
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equation (10) reduces to(
∂p

∂T

)
s

= cp
T

(
∂T

∂v

)
p

(12)

For the case of an ideal gas,(
∂T

∂v

)
p

= p

cp − cv (13)

Upon substitution into equation (12),(
∂p

∂T

)
s

= p
T

k

k − 1
(14)

For the case of an isentropic process, which is the case of
interest, then

dp/p

dT/T
= k

k − 1
(15)

results in a relation given as

T = p(k−1)/k (16)

which is valid for an isentropic process of an ideal gas
with constant specific heats. Equation (16) is not only
well known but also used extensively. Similar results
betweenp and v, and T and v can also be obtained
following through a similar procedure.

1.3. Example 3

Maxwell relations can be found from the Jacobians
themselves and need not be introduced separately. In-
deed, the relations are only yet another way of expressing
the integrability condition of a property. Thus for a cyclic
process in a simple system, the area in ap–v diagram,
representing reversible net work out, will transform to the
same area in aT –s diagram, representing reversible net
heat in, as in equation (5). In mathematical representa-
tion,

∂(p, v)

∂(T , s)
= 1 (17)

For example, (
∂s

∂p

)
T

=
{
∂(s, T )

∂(p,T )

}
which when multiplied by equation (17) becomes

(
∂s

∂p

)
T

=
{
∂(s, T )

∂(p,T )

}{
∂(p, v)

∂(T , s)

}
=
{
∂(s, T )

∂(T , s)

}{
∂(p, v)

∂(p,T )

}
reducing to the well known Maxwell relation(

∂s

∂p

)
T

=−
(
∂v

∂T

)
p

(18)

It seems to be desirable to introduce Maxwell rela-
tions this way since it refers to the fundamental law by
which energy and its Legendre transformations are in-
deed properties or potential functions subject to Maxwell
relations [5].

1.4. Example 4

As an example of design of experiments, consider the
measurement of the speed of sound, which is defined as

c2=
(
∂p

∂ρ

)
s

(19)

whereρ is the density of the medium and is equal to
the inverse of the specific volume. In view of the fact
that the entropy is a nonmeasurable quantity, it must be
eliminated in favor of those that are measurable. Using
equations (6) and (11), the speed of sound becomes

c2=−k
(
∂p

∂ρ

)
T

(20)

which now is totally measurable. Therefore, an isother-
mal experiment must be designed in which the variation
in pressure with respect to density must be measured.

Although it is a well known fact that the choice of ther-
modynamic properties that characterize a physical situa-
tion is arbitrary as long as those properties are indepen-
dent, one finds in the literature situations where this fact
is overlooked in some thermal hydraulics research [6–8].

Assuming that the variables areV, p, andh, whereV
is the flow velocity, the speed of sound reduces to [6]

c2= 1

(∂ρ/∂p)h + (1/ρ)(∂ρ/∂h)p (21)

The first term is obtained as(
∂ρ

∂p

)
h

=−(ρ2)

(
∂v

∂p

)
h

=−(ρ2)
[h,v]
[h,p] (22)
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With the use of equations (4), (6) and (11), it can be
shown that equation (22) reduces to(

∂ρ

∂p

)
h

=−(ρ2)

{
1

k

(
∂v

∂p

)
T

− 1

ρcp

(
∂v

∂T

)
p

}
(23)

From equations (4) and (11), it follows that the second
term of equation (23) can be expressed as

1

ρ

(
∂ρ

∂h

)
p

=− ρ
cp

(
∂v

∂T

)
p

(24)

When equations (21), (23) and (24) are combined, equa-
tion (20) is obtained.

Assuming the variables areV, ρ, andp, the speed of
sound reduces to [6]

c2= −ρ(∂h/∂ρ)p
ρ(∂h/∂p)ρ − 1

(25)

The numerator is the inverse of equation (24). Since(
∂T

∂p

)
ρ

(
∂p

∂ρ

)
T

(
∂ρ

∂T

)
p

=−1 (26)

the denominator of equation (25) can be written as

ρ

(
∂h

∂p

)
ρ

− 1= ρ [h,ρ][p,ρ] − 1= cvρ
(
∂T

∂p

)
ρ

(27)

where equations (4) and (6) are used. When equations
(24), (25) and (27) are combined, equation (20) is
obtained.

Assuming the variables asV, p, andT , the speed of
sound reduces to [6]

c2=
{[
−(∂ρ/∂T )p

ρcp

][
ρ

(
∂h

∂p

)
T

− 1

]
+
(
∂ρ

∂p

)
T

}−1

(28)

The only term to analyze is[ρ(∂h/∂p)T − 1] which
simplifies to[

ρ

(
∂h

∂p

)
T

− 1

]
=−(Tρ)

(
∂v

∂T

)
p

(29)

where equations (4) and (17) are used. From the iden-
tity [3]

(cp − cv)= T
(
∂v

∂T

)
p

(
∂p

∂T

)
v

(30)

and the equations (28) and (29), equation (20) follows.

It is, therefore, obvious that no matter what properties
are chosen, the final result is unique because of the funda-
mental concepts of thermodynamics [7]. However, if the
results in [6] were not reduced in this fashion, they would
have to be evaluated numerically. Since the series repre-
sentation of enthalpy, entropy and other nonmeasurable
terms are not similar, the numerical solutions of equa-
tions (21), (25) and (28) will give different results. The
justification for it was attempted [6]. It is now proven that
that attempt is really a communication that has absolutely
no thermodynamic basis [7].

It is, therefore, seen that the method of Jacobians is
indeed a very powerful one to simplify the various math-
ematical relations encountered in the study of thermody-
namics and gives them physical significance. It is this
physical significance that further increases the appreci-
ation that the students have for thermodynamic reason-
ing and, as a result, they can better relate, understand and
learn thermodynamics [10–12] and makes the teaching of
the subject more pleasurable.

Other experiments can also be designed using the
techniques and methodologies developed above and in
the literature. In the past, along with the speed of sound,
experiments have been designed for the Joule–Thomson
coefficient and the Clausius–Clapeyron equation with
great success and enthusiasm.

2. CONCLUDING REMARKS

It is indeed obvious that the applications of these tech-
niques are very meaningful and give even further in-
sight to why and how things happen. When the student is
taught these methodologies, the learning should improve.
If the mathematical topics are approached in this fashion,
the thermodynamic concepts and equations make more
sense [9].

These concepts and methodologies have been used
for undergraduates, and graduate students, with extreme
success in the United States, Belgium, the Netherlands,
Italy and Turkey. The students have been able to relate to
thermodynamics better once they see and understand the
reasons behind the natural happenings.
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